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Are g-bosons suitable for the description of correlated
fermion pairs?
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Greece .
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Abstract. In a single-j shell we consider fermion pair and multipole operators coupled
to zero angular momentum. The commutation relations of these operators can be
satisfied up to first-order corrections by suitably defined g-bosons, onto which the fermion
pair operators are mapped. After performing the same mapping to a simple pairing
Hamiltonian, we prove that the pairing energies are also correctly reproduced up to the
same order. The small parameter used (T = In Q) is found 10 be inversely proportional
to the size of the shell.

Quantum algebras [1-5], which from the mathematical point of view are Hopf algebras
[6], are currently attracting much attention in physics, especially after the introduction
of the g-deformed harmonic oscillator {7, 8] and its equivalent forms [9]. Initially
used for solving the quantum Yang-Baxter equation [10], they have aiready been used
in conformal field theories [11, 12], in the description of squeezed states [13-15] and
spin chains [16, 17], as well as in describing rotational spectra of deformed nuclei [18,
19], superdeformed nuclei [20], and diatomic molecules [21], as well as in describing
vibrational spectra of diatomic molecuies [22, 23]. In this framework g-bosons can be
introduced in different equivalent ways [7-9, 24). They satisfy commutation relations
which differ from the standard boson commutation relations, to which they reduce in
the limit g — 1.

On the other hand, it is well known in nuclear physics that correlated fermion
pairs in a single-j shell [25-29] or several non-degenerate j-shells [30-32] satisfy
commutation relations which resemble boson commutation relations including cor-
rections due to the presence of the Pauli principle. This fact has been the cause for
the development of boson mapping techniques (see the recent reviews of [33, 34]
and references therein), by which the description of systems of fermions in terms of
bosons is achieved. In recent years boson mappings have attracted additional atten-
tion in nuclear physics as a necessary tool in providing a theoretical justification for
the success of the phenomenological interacting boson model {35-37] and its various
extensions (see [38-40] for recent overviews), in which low-lying collective states of
medium and heavy mass nuclei are described in terms of bosons.

From the above observations it is clear that both ¢-bosons and corr¢lated fermion
pairs satisfy commutation relations which resemble the standard boson commutation
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relations but they deviate from them, due to the g-deformation in the former case
and to the Pauli principle in the latter. A question is thus created: are g-bosons
suitable for the approximate description of correlated fermion pairs? In particular,
is it possible to construct a boson mapping in which correlated fermion pairs are
mapped onto g-bosons, in a way that the g-boson operators approximately satisfy the
same commutation relations as the correlated fermion pair operators? In this letter
we show for the simple case of SU(2) that such a mapping is possible.

Let us consider the single-j shell model [25-29]. One can define fermion pair
and multipole operators as

1
+ : : ¥ L+
A%, = 7 mEmJ(Jme'lJM)ajmajm, _ 1)
1 g
—_ . ;o _ -m +
BJM = r—2J+ 1 mEm‘(JmJ mIIJM)( l)J ajmaj'm." (2)

with the following definitions

Ajm = [AFM]JP BIM = [Byul*. 3)

In the above al, (a;,) are fermion creation (annihilation) operators and
(jmjim'|J M) are the usual Clebsch—Gordan coefficients.

The pair and multipole operators given above satisfy commutation relations which
correspond to the SO(2(2j + 1)) algebra [25-29]. In the present letter, however,
we will restrict ourselves to fermion pairs coupled to angular momentum zero, The
relevant commutation relations take the form

N,
[45, AT] =1~ F @)
B )
N
[TFsAo] =-A ’ (6)

where Ny is the number of fermions, 202 = 25 4+ 1 is the size of the shell, and

B, = Np/v20. (7
With the identifications
N. -
J, = VRAF J_ = VA, Jy = *2 (8)

equations (4)-(6) take the form of the usual SU(2) commutation relations
(Jo,J_ ] =2J, [Jo, Iy ] =Jd, [Jo, ] =—d_. 9)

An exact boson mapping of the SU(2) algebra is given by [29, 33]

A = a} 1-% A0=1/1—%°—a0 Ng = 2n, (10)
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where af (a,) are boson creation (annihilation) operators carrying angular momen-

tum zero and n, is the number of these bosons.
The simplest pairing Hamiltonian one can consider has the form [25-28]

H=-GQAt A,. (11)
The Casimir operator of SU(2) can be written as [25-28]
2
{Ag,A0}+%(1_£F-) =52’-+1 12)

while the pairing energy takes the form [25-28]

E__ Ny M N

(-G~ 2 4 ' 207 (13)

Qur aim is to check if there is a boson mapping for the operators A, A, and
Np in terms of g-deformed bosons, having the following properties:

(i) The mapping is simpler than that of cquation (10), i.e. to each fermion pair
operator AF, A, corresponds a bare g-boson operator and not a boson operator
accompanied by a square root (the Pauli reduction factor).

(ii) The commutation relations (4)-(6) arc satisfied up to a certain order.

(ii) The pairing energies of equation (13) are reproduced up to the same order.

In recent work g-numbers are defined as

[=] = q_—;_r (14)

where ¢ can be real (¢ = e”, where T real) or a phase (¢ = ¢'7, with 7 real).
The g-deformed harmonic oscillator {7, 8] is defined in terms of the creation and
annihilation operators et and e and the number operator N, which satisfy the
commutation relations

[N,a*}=a? [N,a] = —a aat — gFlata = ¢V, (15)
An immediate consequence of (15) is that

ata = [N] aat = [N +1]. (16)

The Hamiltonian of the g-deformed harmonic oscillator is
heo 4 +
H = —2—((1(1 +ata) (17)
and its ¢igenvalues are

E(n) = "2([n] + [n + 1]). (18)
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For g being a phase, the commutator of ¢ and a* takes the form

cos[(2N + 1)7/2]
cos(7/2)

[a,a*] =[N +1] - [N] = (19)

In physical situations r is expected to be small (i.e. of the order of 0.01), as in
the cases of [18-23]. Therefore in equation (19) one can take Taylor expansions of
the functions appearing there and thus find an expansion of the form

2 4
[a,a+]=1—:2_(N2+N)+:—4(N4+2N3—N)—n--. (20)

We remark that the first-order corrections contain not only a term proportional to
N, but in addition a term proportional to N2, which is larger than N. Thus one
cannot make the simple mapping

Ag—>a  AY >at  Np—2N @21

because then one cannot get the commutation relation (4) correctly up to the first
order of the corrections. The same problem appears in the case in which ¢ is real
as well. In addition, by making the simple mapping of equation (21) the pairing
Hamiltonian can be written as
H

—aq = ¢ e=[N] 22)
In the case of small T, one can again take Taylor expansions of the trigonometric
(hyperbolic) functions appearing in the definition of the g-numbers for ¢ being a
phase (real) and thus obtain the following expansion

2 4
[N]=N %(N ~N%+ E%B(TN —10N? 4+ 3N%)

T6

* 15120

(31N —49N3 421N 3N ... (23)

where the upper (lower) sign corresponds to ¢ being a phase {real). We remark that
while the first-order corrections in equation (13) are proportional to N? and N,
here the first-order corrections are proportional to N and N3. Thus neither of the
pairing energies can be reproduced correctly by this mapping.

However, a different version of the g-harmonic oscillator can be obtained by
defining [8, 9] the operators b, b* through the equations

a=qg'/?q N2 ot =q'f2g N2t (24)
Equation (15) then gives

[N,bt] = bt [N, b] = —b bbt — ¢*bTh = 1. (25)
By using the symbol Q = ¢ and introducing the Q-number

-1

[zlq = % — (26)
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we find the analogue of equation (16)
b*b =[Ny bt = [N 4 1] 5. 27

The Hamiltonian of the corresponding deformed harmonic osciliator has the form
TR
H = —(bb* + b*b) (28)
K4
the eigenvalues of which are

B(n) = "2([nlg +1n+ 1lg). (29)

It should be noticed at this point that the definition of g-number given in equa-
tion (26) was historically the first to be introduced in the framework of g-analysis
[41], while the last of the commutation relations of equation (25) has been stud-
ied by Kuryshkin [24]. For convenience from now on we will call the numbers of
equation (26) the Q-numbers, while the numbers of equation (14) we will call the
g-numbers.

From the above relations, it is clear that the following commutation relation holds

(8, 6%] = [N+ 1]g - [N]g = QV. (30)
Defining Q@ = e7 this can be written as

T2N? T3N3
+

L o
[b.6%] =14 TN + — -

+oe. 31

We remark that the first-order correction is proportional to V. Thus, by making the
boson mapping

Ab bt Ag—b  Np— 2N (32)

one can satisfy equation (4} up to the first order of the corrections by determining
T=-2/2.

We should now check if the pairing energies (equation (13)) can be found correctly
up to the same order of approximation when this mapping is employed. The pairing
Hamiltonian in this case takes the form

H
o = b= 1Mo (33)

Defining @ = e7 it is instructive to construct the expansion of the Q-number of
equation (26) in powers of T. Assuming that 7" is small and taking Taylor expansions
in equation (26} one finally has

T2 T3

— .T, 2 _ il 3 2 il 4 3 2
[N]Q_N+2(N N)+12(2N 3N +1)+24(N 2N LN 4.

(34
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Using the value of the deformation parameter T = —2/Q, determined above from
the requirement that the commutation relations are satisfied up to first-order correc-
tions, the pairing energies become

E NI_N 92N3_3N241 NY-2N34 N2

o= N-——qg ¢t 302 E

4 (35)

The first two terms in the right-hand side of equation (35), which correspond to
the leading term plus the first-order corrections, are exactly equal to the pairing
energies of equation (13), since N — 2/N. We therefore conclude that through the
boson mapping of equation (32) one can both satisfy the fermion pair commutation
relations (4)—(6) and reproduce the pairing energies of equation (13) up to the first-
order corrections.

The following comments are also in order.

(i) By studying the spectra of the two versions of the ¢g-deformed harmonic oscil-
lator, given in equations (18) and (29), one can easily draw the following conclusions:
when compared to the usual oscillator spectrum, which is equidistant, the spectrum
of the g-oscillator shrinks when g is a phase, while the spectrum of the Q-oscillator
shrinks when 7' < 0. In a similar way, the spectrum of the g-oscillator expands for g
rcal, while the spectrum of the Q-oscillator expands for T > 0. In physical situations

[19_')’11 1l‘ hﬂﬂ hppl‘l fnnnrl that tha I‘\]’I‘ICH“O‘IU intaracring reenlte ara nhtainad with -
DU Lar WG P YOIy DLW LR 1hauig div Colamél wiln iy

bemg a phase. Thus in the case of the Q-oscillator it is when T < 0 which is the
physically interesting case. As we have already seen, it is exactly for T = -2/ < 0
that the present mapping gives the fermion pair results.

Table 1. Pairing energies for shells of differem size 2§} = 23 + 1. For each §2 the
classical {CL) results obtained from equation (13} (with Ng = 2N} and the Q-boson
(Q) results obtained from equation (33) are shown. In the latter case the values of the

deformation parameter T = —~2/Q are also shown.
Q 11 11 16 16 22 22
T 0.182 0.125 0.091
N o Q CL Q cL Q
I 1.0d0 1000 1000 1000 1000 1000
2 1.818 1.834 1.875 1.883 1.909 1.913
3 2.455 2529 1625 2.661 2.727 2.747
4 2.909 3109 3250 3349 3455 3508
5 3.182 3592 3750 3.955 4.091 4.203
4 3.273 3.995 4,125 4490 44636 4.838
7 4375 4963 5091 5.418
8 4.500 5380 5455 5947
9 5721 6430
10 5909  6.871
11 6.000 7.274

(ii) It should be recalled that the pairing model under discussion is studied under
the assumptions [25-28] that the degeneracy of the shell is large (2 > 1), that the
number of particles is large (/V >» 1), and that one stays away from the centre of the
shell (@ — N = O(N)). In order to check the accuracy of the present mapping in
reproducing the pairing energics, we report in table 1 the results of some calculations
for 2 = 11 (the size of the nuclear fp major shell), 2 = 16 (the size of the nuclear
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sdg major shell) and Q = 22 (the size of the nuclear pfh major shell), while in table 2
we report the resuits for the case 2 = 50 (as an example of a large shell). In all cases
good agreement between the classical pairing modei resuits and the Q-Hamiltonian
of equation (33) is obtained up to the point at which about one-quarter of the shell
is filled. The deviations observed near the middle of the shell are expected, since
there the expansion used breaks down.

Table 2. Same as table 1, for 2 = 50, T = =0.04.

N o Q N Q N o Q

1 1000 1000 10 8.200 8.408 19 12.160  13.576
2 1.960  1.961 11 8.800 9.078 20 12400 14.044
3 2.880 2884 12 9.360 9.722 21 12600 14.493
4 3760 3771 13 9.880 10341 22 12760 14.925
5 4600 4623 14 10360 10936 23 12.880 15340
6 5400 5442 15 10.800 11507 24 12960 15738
7 6.160 6.228 16 11.200 12.056 25 13.000 16.121
8 6.880 6.984 17 11.560  12.583

9 7560 7710 18 11.88¢  13.090

In conclusion, we have shown that an approximate mapping of the fermion pairs
coupled to angular momentum zero in a single-j shell onto suitably dcfined g-bosons
(called Q-bosons in this letter) is possible. The SU(2) commutation relations are
satisfied up to the first-order cotrections, while at the same time the eigenvalues of a
simple pairing Hamiltonian are correctly reproduced up to the same order. The small
parameter of the expansion, which is 7' (where Q@ = e7), turns out to be negative
and inversely proportional to the size of the shell.

The present results are an indication that suitably defined ¢-bosons could be used
for describing systems of correlated fermions under certain conditions in a simplified
way. The extension of the present method to fermion pairs coupled to non-zero
angular momentum, which would allow for a fuller treatment of the singlie-j shell
model, is under investigation. The construction of g-bosons which would exactly
satisfy the fermion pair SU{2) commutation relations is also under investigation,

using the powerful method of [42).

Support from the Greek Ministry of Research and Technology is gratefully acknowl-
edged.
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