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LElTER TO THE EDITOR 

Are q-bosons suitable for the description of correlated 
fermion pairs? 

Dennis Bonatsos 
Institute of Nuclear Physics, NCSR ‘Demokritos’. GR-15310 Aghia Paraskevi. Alliki, 
G w e  

Received 22 July 1991, in final Corm 25 November 1991 

AbsbcL In a single-j shell wc consider fermion pair and multipole aperaton coupled 
to zero angular momentum. The commutation relations of these operators can be 
satisfied up to first+rder corrections by suitably defined q-bosons. onto which the fermion 
pair operators are mapped. After performing the same mapping to a simple pairing 
Hamiltonian, we pmve that the pairing energis are also correctly repmduced up to the 
same order. The small parameter used (T = In Q) is found to be inveneiy proportional 
to the size at the shell. 

Quantum algebras [l-51, which from the mathematical point of view are Hopf algebras 
[6], are currently attracting much attention in physics, especially after the introduction 
of the q-deformed harmonic oscillator [7, 81 and its equivalent forms 191. Initially 
used for solving the quantum Yang-Baxter equation [lo], they have already been used 
in conformal field theories [l l ,  121, in the description of squeezed states [13-151 and 
spin chains [16, 171, as well as in describing rotational spectra of deformed nuclei [IS, 
191, superdeformed nuclei [20], and diatomic molecules [21], as well as in describing 
vibrational spectra of diatomic molecules [22, 231. In this framework q-bosons can be 
introduced in different equivalent ways [7-9, 24). They satisfy commutation relations 
which differ from the standard boson commutation relations, to which they reduce in 
the limit q - 1. 

On the other hand, it is well known in nuclear physics that correlated fermion 
pairs in a single-j shell [25-291 or several non-degenerate j-shells [3&32] satisfy 
commutation relations which resemble boson commutation relations including cor- 
rections due to the presence of the Pauli principle. This fact has been the cause for 
the development of boson mapping techniques (see the recent reviews of [33, 341 
and references therein), by which the description of systems of fermions in terms of 
bosons is achieved. In recent years boson mappings have attracted additional atten- 
tion in nuclear physics as a necessary tool in providing a theoretical justification for 
the success of the phenomenological interacting boson model [35-371 and its various 
extensions (see [38-40] for recent overviews), in which low-lying collective states of 
medium and heavy mass nuclei are described in terms of bosons. 

From the above observations it is clear that both q-bosons and correlated fermion 
pairs satisfy commutation relations which resemble the standard boson commutation 
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relations but they deviate from them, due to the q-deformation in the former case 
and to the Pauli principle in the latter. A question is thus created: are pbosons 
suitable for the approximate description of correlated fermion pairs? In particular, 
is it possible to construct a boson mapping in which correlated fermion pairs are 
mapped onto q-bosons, in a way that the q-boson operators approximately satisfy the 
same commutation relations as the correlated fermion pair operators? In this letter 
we show for the simple case of SU(2) that such a mapping is possible. 

Let us consider the single-j shell model [25-291. One can define fermion pair 
and multipole operators as 

with the following definitions 

In the above a!,,, (ajm) are fermion creation (annihilation) operators and 
( j m j m ‘ l J M )  are the usual Clebsch-Gordan coefficients. 

The pair and multipole operators given above satisfy commutation relations which 
correspond to the SO(Z(2j + 1)) algebra [25-291. In the present letter, however, 
we will restrict ourselves to fermion pairs coupled to angular momentum zero. The 
relevant commutation relations take the form 

N F  [Ao ,A$]  = 1 - - R 

[ $ , A $ ]  = A i  

[$ ,A, ]  = - A ,  

where NF is the number of fermions, 2R = 2 j  + 1 is the size of the shell, and 

Bo = N , / f i .  (7) 

With the identifications 

(8) 
N,-R J ,  = f i A $  J -  = fin, J ,  = ~ 

2 

equations (4)-(6) take the form of the usual SU(2) commutation relations 

[ J + , J - l = 2 J ,  [ J o , J + ] = J +  [ J , , J - l = - J - .  (9) 

An exact boson mapping of the SU(2) algebra is given by [29, 331 

A; = aim A, = ma, N~ = 2n, (10) 
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where a: (a,,) are boson creation (annihilation) operators carrying angular momen- 
tum zero and no is the number of t hee  bosons. 

The simplest pairing Hamiltonian one can consider has the form [25-28] 

H = -GQA ;A, .  (11) 

The Casimir operator of SU(2) can be written as [ZS-281 

while the pairing energy takes the form [2S-28] 

Our aim is to check if there is a boson mapping for the operators Ai, A, and 
N ,  in terms of q-deformed bosons, having the following properties: 

(i) The mapping is simpler than that of equation (lo), i.e. to each fermion pair 
operator AT, A,, corresponds a bare q-boson operator.and not a boson operator 
accompanied by a square root (the Pauli reduction factor). 

(ii) The commutatim relations (4)-(6) are satisfied up to a certain order. 
(ii) The pairing energies of equation (13) are reproduced up to the same order. 

In recent work q-numberj are defined as 

where q can be real ( q  = er, where r real) o r  a phase ( q  = e", with T real). 
The q-deformed harmonic oscillator [7, 81 is defined in terms of the creation and 
annihilation operators at and a and the number operator N, which satisfy the 
commutation relations 

[ N ,  U + ]  = a' [ N ,  a] = --a uat - q F 1 a t a  = q f N .  (15) 

An immediate consequence of (15) is that 

u t a  = [NI  a u t  = [ N  + 11. (16) 

The Hamiltonian of the q-deformed harmonic oscillator is 

and its eigenvalues are 
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For q being a phase, the commutator of a and a+ takes the form 

[ a , a + ] = [ N + 1 ] - [ N ] =  c o s [ ( 2 N  + l ) r / 2 ]  
cos( . /2) 

In physical situations T is expected to be small (i.e. of the order of 0.01), as in 
the cases of [lS-231. Therefore in equation (19) one can take Thylor expansions of 
the functions appearing there and thus find an expansion of the form 

T2 7 4  
[a,.+] = 1 - - ( N z  2 + N ) +  -(N4 24 + - N )  - ... . (20) 

We remark that the first-order corrections contain not only a term proportional to 
N, but in addition a term proportional to N 2 ,  which is larger than N .  Thus one 
cannot make the simple mapping 

A,, - a A , f - a +  N , + 2 N  (21) 

because then one cannot get the commutation relation (4) correctly up to the first 
order of the corrections The same problem appears in the case in which q is real 
as well. In addition, by making the simple mapping of equation (21) the pairing 
Haii,i;ioiiian 'ie -wil~pii  a j  

~- - a+a = [ N I .  
H 

- Gn 

In the case of small T ,  one can again take Thylor expansions of the trigonometric 
(hyperbolic) functions appearing in the definition of the q-numbers for q being a 
phase (real) and thus obtain the following expansion 

[NI = N f - ( N  - N3)  + - ( 7 N  - 10N3 + 3N5) 
9 r4 

6 360 
7 6  *- (31N -49N3+21NS -3") t 

15120 

where the upper (lower) sign corresponds to q being a phase (real). We remark that 
while the first-order corrections in equation (13) are proportional to N ;  and N,, 
here the first-order corrections are proportional to N and N 3 .  Thus neither of the 
pairing energies can be reproduced correctly by this mapping. 

However, a different version of the q-harmonic oscillator can be obtained by 
defining [8, 91 the operators b, 6+ through the equations 

(24) a = q l / ' I b q - N / 2  a+ = 112 - N / ? b + ,  4 9  

Equation (15) then gives 

[ N ,  6+] = 6+ [ N , 6 ] = - 6  6 b t - q 2 6 + 6 =  1 .  (25) 

By using the symbol Q = q2 and introducing the Q-number 

Q" - 1 

Q - 1  
[ZIQ = - 
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we find t h e  analogue of equation (16) 

6'6= [NIQ bbt = [N + lIg. 

The Hamiltonian of the corresponding deformed harmonic oscillator has the form 

(28) 
hW 

H = y( 6bt + 6'6) ' 
the eigenvalues of which are 

(29) 
hw 

E ( n )  = ,(InIQ + [. + l l g ) .  

It should be noticed at  this poinl that the definition of g-number given in equa- 
tion (26) was historically the first to be introduced in the framework of q-analysis 
[41], while the last of the commutation relations of equation (25) has been stud- 
ied by Kuryshkin [24]. For convenience from now on we will call the numbers of 
equation (26) the Q-numbers, while the numbers of equation (14) we will call the 
q-numbers. 

From the above relations, it is clear that the following commutation relation holds 

[6,b+] = [N + 1IQ - [NIg = QN. (30) 

Defining Q = eT this can be written as 

+. . . .  T2N2 T3N3 
[6,6+] = 1 + T N  + ~ + - 

2 G 

We remark that the first-order correction is proportional to N. Thus, by making the 
boson mapping 

A i  i bt A, - 6 N ,  i 2 N  (32) 

one can satisfy equation (4) up to the first order of the corrections by determining 
T = -2/n. 

We should now check if the pairing energies (equation (13)) can be found correctly 
up to the same order of approximation when this mapping is employed. The pairing 
Hamiltonian in this case takes the form 

-- - btb = [NIQ, H 
- Gn (33) 

Defining Q = eT it is instructive to construct the expansion of the Q-number of 
equation (26) in powers of T. Assuming that T is small and taking Tdylor expansions 
in equation (26) one finally has 
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Using the value of the deformation parameter T = -Z/R, determined above from 
the requirement that the commutation relations arc satisfied up to first-order correc- 
tions, the pairing energies become 

The first two terms in the right-hand side of equation (35), which correspond to 
the leading term plus the first-order corrections, are exactly equal to the pairing 
energies of equation (13), since N F  -+ 2 N .  We therefore conclude that through the 
boson mapping of equation (32) one can both satisfy the fermion pair commutation 
relations (4)-(6) and reproduce the pairing energies of equation (13) up to the first- 
order corrections. 

The following cOmments are also in order. 
(i) By studying the spectra of the two versions of the q-deformed harmonic oscil- 

lator, given in equations (18) and (29), one can easily draw the following conclusions: 
when compared to the usual oscillator spectrum, which is equidistant, the spectrum 
of the q-oscillator shrinks when q is a phase, while the spectrum of the &-oscillator 
shrinks when T < 0. In a similar way, the spectrum of the q-oscillator expands for q 
real, while the spectrum of the Q-oscillator expands for T > 0. In physical situations 

being a phase. Thus in the case of the Q-oscillator it is when T < 0 which is the 
physically interesting case. As we have already seen, it is exactly for T = -Z/R < 0 
that the present mapping gives the fermion pair results. 

[&q has heen fesfid that p!yi-!!y ix;e:-ti-g :esu!;s. 2:: =b:ni-ed .*,i:h 

Table 1. Pairing energies for shells of dilferenl size 2 0  = 2 j  + 1. For each R the 
classical (CL) resulls obtained from equation (13) (with N F  = 2 N )  and the Q-boson 
(0 )  results obtained from equation (33) are shown. In the lalter case the values of Ihe 
deformation parameter T = - 2  /R are also shavn. 

R 11 11 lh Ih 22 22 
T 0.182 0.125 0.091 
N CL Q CL Q CL 0 

1 !.E !.E8 ! .KG !.8!!9 !.CO0 !.CM 
2 1.818 1.834 1.87s 1.883 1.909 1.913 

4 2.909 3.109 3.250 3.349 3.455 3.508 
5 3.182 3.592 3.750 3.955 4 . 0 ~ 1  4.203 

7 4.37s 4.963 s.091 5.418 
8 4.500 5.380 5.455 5.947 

3 2.455 2.529 2.h25 2.661 2.727 2.747 

6 3.273 3.995 4.125 4.490 4.63h 4.838 

9 5.727 h.430 
10 5.909 6.871 
I1 6.000 7.274 

(ii) It should be recalled that the pairing model under discussion is studied under 
the assumptions 125-281 that the degeneracy of the shell is large (n > l ) ,  that the 
number of particks is large ( N  >> li and that one stays away 6om the centre of the 
shell (a - N = O( N ) ) .  In order to check the accuracy of the present mapping in 
reproducing the pairing energies, we report in table 1 the results of some cakulations 
for Cl = 11 (the size of the nuclear fp major shell), n = 16 (the Size of  the nuclear 
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sdg major shell) and R = 22 (the size of the nuclear pfh major shell), while in table 2 
we report the results for the case R = 50 (as an example of a large shell). In all cases 
good agreement between the classical pairing model results and the Q-Hamiltonian 
of equation (33) is obtained up to the point at which about one-quarter of the shell 
is filled. The deviations obsetved near the middle of the shell are expected, since 
there the expansion used breaks down. 

TZbk 2. r,,: 2; :&!e 1, k: R = 5n, T = =G.% 

N CL 0 N CL 0 N CL 0 

1 l.m 
2 1.960 
3 2.880 
4 3.760 
5 4.600 
6 5.400 
7 6.160 
8 6.880 
9 7.560 

l.m 10 
1.961 11 
2.884 12 
3.771 13 
4.623 14 
5.442 15 
6.228 I6 
6.984 17 
7.710 18 

8.200 
8.800 
9.360 
9.880 

10.360 
10.800 
11.2w 
11.560 
11.880 

8.408 19 12.IW 13.576 
9.078 20 12.403 14.044 
9.722 21 12.600 14.493 

10.341 22 12.7M 14.925 
10.936 23 12.880 15.340 
11.507 24 12.960 15.7% 
12.056 25 13.000 16.121 
12.583 
13.090 

In conclusion, we have shown that an approximate mapping of the  fermion pairs 
coupled to angular momentum zero in a single-j shell onto suitably dcfined q-bosons 
(called Q-bosons in this letter) is possible. The SU(2) commutation relations are 
satisfied up to the first-order corrections, while at  the same time the eigenvalues of a 
simple pairing Hamiltonian are correctly reproduced up to the same order. The small 
parameter of the expansion, which is T (where Q = eT), turns out to be negative 
and inversely propoltional to the size of the shell. 

The present results are an indication that suitably defined q-bosons could be used 
for describing systems of correlated fermions under certain conditions in a simplified 
way. The extension of the present method to fermion pairs coupled to non-zero 
angular momentum, which would allow for a fuller treatment of the single-j shell 
model, is under investigation. The construction of q-bosons which would erocriy 

using the powerful method of [42]. 

Support from the Greek Ministiy of Research and Technology is gratefully acknowl- 
edged. 
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